Desde pequeno, eu sempre adorei ler textos sobre a história da ciência. Quando criança eu lia a Superinteressante, na época em que era boa, e mais recentemente eu lia os bons livros de divulgação, como o Drunkard's Walk do Mlodinow. Mas, em algum ponto no ano passado, caiu uma ficha aqui. Por que eu estava lendo informação de segunda mão sobre probabilidade, se podia ler diretamente os originais do Laplace?
O maior problema em ler textos originais é a língua. Afinal, o Laplace escrevia em francês, o Euclides em grego, o Einstein em alemão, e eu não domino nenhuma dessas línguas. A boa notícia é que praticamente todos os textos científicos relevantes já foram traduzidos para o inglês em algum ponto. A má notícia é que muitas vezes esses textos estão fora de catálogo e nunca foram digitalizados.
Mas como tipicamente acontece comigo, curiosidade se mistura com obsessão, e lá fui eu fui fazer arqueologia nos sebos da Califórnia, conseguindo no final uma lista bem considerável de textos originais! (Pra quem estiver curioso, eu coloquei online a lista com os textos que já consegui.)
Para dar um gostinho de como é divertido ler os originais, eu resolvi traduzir um trecho sobre um tema que todo mundo já viu no colégio: as Três Leis de Newton, tais como enunciadas em 1687. Mas antes de falar das leis em si, vale a pena falar um pouco sobre o livro em que elas aparecem, o Principia.
Ler o Principia é bastante diferente de ler um livro atual sobre Física. Em especial, tem duas diferenças que são bem gritantes. A primeira é que o Principia não tem equações. Nenhuma, nenhuma. Todos os cálculos são feitos com desenho geométrico.
Se você parar pra pensar, nem é tão diferente do que a gente faz normalmente. Antes de montar as equações em um problema de Física, você usualmente vai desenhar os vetores com as forças; o Newton simplesmente desenhava os vetores em escala e usava geometria para resolver o problema.
O motivo para usar desenho geométrico ao invés de equações só ele sabia; mas dado que ele era fã dos Elementos de Euclides, pode-se supor que ele queria deixar o Principia mais parecido com os tratados gregos.
A segunda diferença do Principia para os livros atuais é que ele não tem citações. Nas raras vezes que o Newton cita algum outro cientista, é sempre um cientista que já tinha morrido, como o Aristóteles ou o Galileu; e nunca um contemporâneo como o Leibniz ou o Hooke.
O motivo, claro, era para não dividir os créditos das descobertas com ninguém. Na esfera pessoal, não há dúvidas de que o Newton era um pilantra (mas, por outro lado, ele era o pilantra mais inteligente de sua época, o que faz dele uma espécie de Lex Luthor do século XVII).
O Principia originalmente era dividido em três livros, mas para fins de exposição eu acho mais fácil dividi-lo nas seções abaixo. Preste atenção na ordem delas, porque tem uma pegadinha mais tarde:
1. Préfacios e Introduções
2. Definições
3. Axiomas, ou as Leis do Movimento
4. Introdução ao Cálculo
5. O Movimento dos Corpos
6. O Sistema do Mundo
7. Conclusão
A minha cópia do Principia é uma tradução recente, feita em 1999. Mas se você quiser acompanhar sem gastar dinheiro, no Google Books tem o scan da primeira edição em latim, e da primeira tradução para o inglês, feita em 1729 (se a fonte parecer esquisita demais, note que aquele símbolo que parece uma integral na verdade é um S longo).
Eu poderia falar horas sobre o Principia, mas já que o objetivo é mostrar as três leis eu vou cobrir só duas seções: as definições e os axiomas.
Definições
Um problema que o Newton tinha era evitar a ambigüidade que alguns termos de uso comum possuem. Espaço, tempo, reta, plano, essas coisas são todas bem definidas. Mas não havia um conceito correto para medir matéria e movimento.
Informalmente, media-se matéria através do peso, e movimento a partir da velocidade, mas o Newton sacou que essas medidas não são as melhores possíveis. Por isso, ele apresenta dois conceitos novos que serão mais úteis. (Tudo que estiver na caixa azul é texto traduzido do Principia):
Nessa definição, o Newton apresenta pela primeira vez o conceito de massa. Ele já sabia que peso não é uma boa medida da matéria, afinal, ele muda de acordo com o ponto em que você está (Newton sabia que um corpo em Paris tinha um peso levemente diferente do que teria se estivesse em Londres). Além disso, faz sentido falar do peso da Lua ou de Júpiter?
Note também como o Newton apresenta suas equações de modo implícito. Primeiro ele fala que a massa é uma função da densidade e do volume, mas não fala que função é essa. Depois, pelos exemplos, fica claro que a função é uma multiplicação, então massa é igual a densidade vezes volume.
É mais difícil empurrar um caminhão a 10km/h que uma bicicleta, por isso o Newton sacou que o movimento não é simplesmente a velocidade, mas sim a velocidade vezes a massa. Em terminologia moderna, o Newton nesse trecho está definindo o momento.
Axiomas, ou as Leis do Movimento
Esse é o trecho que interessa, onde ele define as três leis. Novamente, o formato é baseado nos Elementos de Euclides, você começa o livro com os axiomas e depois deriva todo o resto a partir deles.
A parte curiosa dessa explicação é que ele cria uma lei sobre movimento retílineo, mas todos os exemplos envolvem movimentos curvos :) Não sei se a parte do pião que gira é clara, o que ele quis dizer é que cada partícula individual do pião tem a tendência de sair pela tangente, e só não faz isso porque as partículas estão grudadas entre si.
Mas eu acho que a primeira lei, enquanto axioma, não é das melhores. O que essa lei diz é que, na ausência de forças, a velocidade não muda, ou seja, na ausência de forças, a aceleração é zero. Mas você não precisava de uma lei só pra isso, porque a segunda lei já vai dizer que F=ma. Se a massa é positiva e a força é zero, então a aceleração vai ser zero. A primeira lei é redundante.
Na época de faculdade a gente sempre pregava peça nos calouros. A conversa começava com "Ei bixo, qual é a segunda lei de Newton?". O calouro respondia que era F=ma e aí você sacaneava ele: "Claro que não, F=ma só vale se a massa for constante! O que o Newton disse é que a força é a derivada do momento, e como momento é massa vezes velocidade, então a equação correta é assim:
Ahá, agora sim! A definição de força faz sentido porque força tem uma propriedade importante: ela é uma interação entre dois corpos que aparece em pares de igual intensidade e direções opostas. Nesse trecho eu também acho bacana os exemplos com pedras, cordas e cavalos: esse é um livro escrito em 1687, então cavalos eram muito mais comuns no dia-a-dia das pessoas que hoje em dia.
Mas eu acho que a terceira lei, enquanto axioma, não é das melhores. Imagine que você está em um carro que dá uma freada brusca. Você é acelerado para a frente, e se você multiplicar essa aceleração pela sua massa, descobre a força que te empurrou. Agora, onde está a reação dessa força, hein? hein?
A resposta é que essa força não tem reação. A terceira lei de Newton não funciona sempre, ela só funciona no caso especial em que o referencial não é acelerado. Essa força que você mediu é chamada de força inercial, ela não tem reação e só aparece em referenciais acelerados. Tem quem chame a força inercial de força fictícia, mas eu não gosto dessa nomenclatura: tente andar num carro sem cinto de segurança para ver o estrago fictício que o vidro vai fazer na sua cabeça!
"Mas peraí Ricbit, você não gosta de nenhuma das três leis!". Verdade, mas é porque dá pra fazer coisa melhor. Apresento a vocês a Lei Unificada de Newton:
Em um sistema isolado, o momento se conserva.
Pronto, uma única lei, bem mais simples que as anteriores, e você pode deduzir as três leis a partir dela. Na verdade, com esse enunciado você ainda ganha um monte de vantagens: ao contrário das três leis originais, essa versão funciona em referenciais não-inerciais, na relatividade especial e geral, e até na mecânica quântica!
Ler textos originais é um exercício muito divertido, mas para apreciar completamente você precisa se despojar do que aprendeu na escola. E a minha conclusão após ler bastante é que aprender é fácil, mas desaprender é muito mais difícil!
O maior problema em ler textos originais é a língua. Afinal, o Laplace escrevia em francês, o Euclides em grego, o Einstein em alemão, e eu não domino nenhuma dessas línguas. A boa notícia é que praticamente todos os textos científicos relevantes já foram traduzidos para o inglês em algum ponto. A má notícia é que muitas vezes esses textos estão fora de catálogo e nunca foram digitalizados.
Mas como tipicamente acontece comigo, curiosidade se mistura com obsessão, e lá fui eu fui fazer arqueologia nos sebos da Califórnia, conseguindo no final uma lista bem considerável de textos originais! (Pra quem estiver curioso, eu coloquei online a lista com os textos que já consegui.)
Ler o Principia é bastante diferente de ler um livro atual sobre Física. Em especial, tem duas diferenças que são bem gritantes. A primeira é que o Principia não tem equações. Nenhuma, nenhuma. Todos os cálculos são feitos com desenho geométrico.
Se você parar pra pensar, nem é tão diferente do que a gente faz normalmente. Antes de montar as equações em um problema de Física, você usualmente vai desenhar os vetores com as forças; o Newton simplesmente desenhava os vetores em escala e usava geometria para resolver o problema.
O motivo para usar desenho geométrico ao invés de equações só ele sabia; mas dado que ele era fã dos Elementos de Euclides, pode-se supor que ele queria deixar o Principia mais parecido com os tratados gregos.
A segunda diferença do Principia para os livros atuais é que ele não tem citações. Nas raras vezes que o Newton cita algum outro cientista, é sempre um cientista que já tinha morrido, como o Aristóteles ou o Galileu; e nunca um contemporâneo como o Leibniz ou o Hooke.
O motivo, claro, era para não dividir os créditos das descobertas com ninguém. Na esfera pessoal, não há dúvidas de que o Newton era um pilantra (mas, por outro lado, ele era o pilantra mais inteligente de sua época, o que faz dele uma espécie de Lex Luthor do século XVII).
Isaac Newton sonegou mais de 40 citações. E isso é terrível.
O Principia originalmente era dividido em três livros, mas para fins de exposição eu acho mais fácil dividi-lo nas seções abaixo. Preste atenção na ordem delas, porque tem uma pegadinha mais tarde:
1. Préfacios e Introduções
2. Definições
3. Axiomas, ou as Leis do Movimento
4. Introdução ao Cálculo
5. O Movimento dos Corpos
6. O Sistema do Mundo
7. Conclusão
A minha cópia do Principia é uma tradução recente, feita em 1999. Mas se você quiser acompanhar sem gastar dinheiro, no Google Books tem o scan da primeira edição em latim, e da primeira tradução para o inglês, feita em 1729 (se a fonte parecer esquisita demais, note que aquele símbolo que parece uma integral na verdade é um S longo).
Eu poderia falar horas sobre o Principia, mas já que o objetivo é mostrar as três leis eu vou cobrir só duas seções: as definições e os axiomas.
Definições
Um problema que o Newton tinha era evitar a ambigüidade que alguns termos de uso comum possuem. Espaço, tempo, reta, plano, essas coisas são todas bem definidas. Mas não havia um conceito correto para medir matéria e movimento.
Informalmente, media-se matéria através do peso, e movimento a partir da velocidade, mas o Newton sacou que essas medidas não são as melhores possíveis. Por isso, ele apresenta dois conceitos novos que serão mais úteis. (Tudo que estiver na caixa azul é texto traduzido do Principia):
Quantidade de matéria é uma medida da matéria que surge conjuntamente da sua densidade e de seu volume.
Se a densidade do ar dobrar em um espaço que também dobra, então existe quatro vezes mais ar, e seis vezes mais ar se o espaço triplicar. O caso é o mesmo tanto para neve e pó condensado por compressão ou liquefação, como para quaisquer outros corpos condensados de qualquer maneira por qualquer método. Por enquanto, eu não estou levando em conta o meio, se existir algum, que penetra pelos interstícios entre as partes do corpo. Além disso, eu sempre tenho essa quantidade em mente quando usar o termo "corpo" ou "massa" daqui em diante. Ela sempre pode ser deduzida a partir do peso de um corpo (por exemplo, fazendo experimentos precisos com pêndulos), e eu descobri que ela é sempre proporcional ao peso.
Se a densidade do ar dobrar em um espaço que também dobra, então existe quatro vezes mais ar, e seis vezes mais ar se o espaço triplicar. O caso é o mesmo tanto para neve e pó condensado por compressão ou liquefação, como para quaisquer outros corpos condensados de qualquer maneira por qualquer método. Por enquanto, eu não estou levando em conta o meio, se existir algum, que penetra pelos interstícios entre as partes do corpo. Além disso, eu sempre tenho essa quantidade em mente quando usar o termo "corpo" ou "massa" daqui em diante. Ela sempre pode ser deduzida a partir do peso de um corpo (por exemplo, fazendo experimentos precisos com pêndulos), e eu descobri que ela é sempre proporcional ao peso.
Nessa definição, o Newton apresenta pela primeira vez o conceito de massa. Ele já sabia que peso não é uma boa medida da matéria, afinal, ele muda de acordo com o ponto em que você está (Newton sabia que um corpo em Paris tinha um peso levemente diferente do que teria se estivesse em Londres). Além disso, faz sentido falar do peso da Lua ou de Júpiter?
Note também como o Newton apresenta suas equações de modo implícito. Primeiro ele fala que a massa é uma função da densidade e do volume, mas não fala que função é essa. Depois, pelos exemplos, fica claro que a função é uma multiplicação, então massa é igual a densidade vezes volume.
Quantidade de movimento é uma medida do movimento que surge conjuntamente da velocidade e da quantidade de matéria.
O movimento como um todo é a soma dos movimentos das partes individuais, e, portanto, se um corpo é duas vezes maior que outro, mas tem a mesma velocidade, então há duas vezes mais movimento; e se há o dobro da velocidade, então há quatro vezes o movimento.
O movimento como um todo é a soma dos movimentos das partes individuais, e, portanto, se um corpo é duas vezes maior que outro, mas tem a mesma velocidade, então há duas vezes mais movimento; e se há o dobro da velocidade, então há quatro vezes o movimento.
É mais difícil empurrar um caminhão a 10km/h que uma bicicleta, por isso o Newton sacou que o movimento não é simplesmente a velocidade, mas sim a velocidade vezes a massa. Em terminologia moderna, o Newton nesse trecho está definindo o momento.
Axiomas, ou as Leis do Movimento
Esse é o trecho que interessa, onde ele define as três leis. Novamente, o formato é baseado nos Elementos de Euclides, você começa o livro com os axiomas e depois deriva todo o resto a partir deles.
Primeira lei: Todo corpo persevera em seu estado de repouso, ou de movimento uniforme e retilíneo, exceto se for compelido a mudar de estado por forças aplicadas.
Projéteis perseveram em seus movimentos, exceto se forem retardados pela resistência do ar, e impelidos para baixo pela força da gravidade. Um pião, que possui partes que impedem umas às outras de realizar movimento retilíneos por razão de sua coesão, não deixa de rodar, exceto se for retardado pelo ar. E corpos maiores, como planetas e cometas, preservam por mais tempo seus movimentos progressivos e circulares, pois eles acontecem em espaços com menor resistência.
Projéteis perseveram em seus movimentos, exceto se forem retardados pela resistência do ar, e impelidos para baixo pela força da gravidade. Um pião, que possui partes que impedem umas às outras de realizar movimento retilíneos por razão de sua coesão, não deixa de rodar, exceto se for retardado pelo ar. E corpos maiores, como planetas e cometas, preservam por mais tempo seus movimentos progressivos e circulares, pois eles acontecem em espaços com menor resistência.
A parte curiosa dessa explicação é que ele cria uma lei sobre movimento retílineo, mas todos os exemplos envolvem movimentos curvos :) Não sei se a parte do pião que gira é clara, o que ele quis dizer é que cada partícula individual do pião tem a tendência de sair pela tangente, e só não faz isso porque as partículas estão grudadas entre si.
Mas eu acho que a primeira lei, enquanto axioma, não é das melhores. O que essa lei diz é que, na ausência de forças, a velocidade não muda, ou seja, na ausência de forças, a aceleração é zero. Mas você não precisava de uma lei só pra isso, porque a segunda lei já vai dizer que F=ma. Se a massa é positiva e a força é zero, então a aceleração vai ser zero. A primeira lei é redundante.
Segunda lei: Uma mudança no movimento é proporcional à força motriz aplicada, e tem lugar na mesma linha reta em que a força é aplicada.
Se alguma força gera qualquer movimento, então o dobro da força gera o dobro do movimento, e o triplo da força gera o triplo do movimento, não importando se a força é aplicada de uma só vez ou sucessivamente em passos. E se o corpo já estava se movendo previamente, o novo movimento (já que o movimento é sempre na mesma direção da força motriz) é adicionado ao movimento original se ele está mesma direção, ou subtraído do movimento original se estiver na direção oposta, ou, se for numa direção oblíqua, é combinado obliquamente e composto de acordo com as direções de ambos os movimentos.
Se alguma força gera qualquer movimento, então o dobro da força gera o dobro do movimento, e o triplo da força gera o triplo do movimento, não importando se a força é aplicada de uma só vez ou sucessivamente em passos. E se o corpo já estava se movendo previamente, o novo movimento (já que o movimento é sempre na mesma direção da força motriz) é adicionado ao movimento original se ele está mesma direção, ou subtraído do movimento original se estiver na direção oposta, ou, se for numa direção oblíqua, é combinado obliquamente e composto de acordo com as direções de ambos os movimentos.
Na época de faculdade a gente sempre pregava peça nos calouros. A conversa começava com "Ei bixo, qual é a segunda lei de Newton?". O calouro respondia que era F=ma e aí você sacaneava ele: "Claro que não, F=ma só vale se a massa for constante! O que o Newton disse é que a força é a derivada do momento, e como momento é massa vezes velocidade, então a equação correta é assim:
Se você projetar um avião usando só F=ma, ele vai cair, porque você não levou em conta que ele perde massa enquanto queima o combustível!"
Esse argumento é bom pra sacanear calouro, mas é incorreto. O Newton nunca falou que a força é a derivada do momento. Lembra que eu disse que tinha uma pegadinha na ordem dos capítulos? Nesse capítulo o Newton não poderia ter falado isso, porque ele mostra o Cálculo pela primeira vez só no capítulo seguinte, e portanto não tem como definir força como sendo uma "derivada".
Na verdade, a segunda lei de Newton tal como está no Principia se aplica ao caso discreto, para diferenças de movimentos e não para as suas derivadas. O que engana aqui é o jargão: aquilo que o Newton chama de força não é o mesmo que nós chamamos de força. Ao invés disso, esse conceito apresentado na segunda lei é o que modernamente conhecemos como Impulso. Ou seja, a verdadeira segunda lei é:
Isso fica claro no trecho "não importando se a força é aplicada de uma só vez ou sucessivamente em passos", claramente ele está falando de uma aplicação impulsiva ao invés de uma aplicação contínua. Naturalmente, se você dividir dos dois lados por Δt e tomar o limite quando Δt tende a zero, você chega na definição que todo mundo conhece.
Mas eu acho que a segunda lei, enquanto axioma, não é das melhores. Imagine que eu quero medir o quão cansado eu fico ao empurrar um objeto. Eu fico mais cansado quando o objeto é pesado, e mesmo se o objeto for leve, eu fico cansado se o empurrar por muito tempo. Por isso, eu decido definir Cansaço como sendo o produto da massa pelo tempo: C=mΔt.
Mas tipo, e daí? Só porque eu dei um nome para um produto qualquer não quer dizer que isso seja uma lei da natureza. Da mesma maneira, só porque o Newton multiplicou aceleração por massa e chamou isso de força, não quer dizer que esse produto seja importante. A segunda lei não é uma lei propriamente dita: é só uma definição, e uma definição só faz sentido se tiver alguma propriedade que a acompanhe.
Terceira lei: Para cada ação, existe reação igual e oposta; em outras palavras, as ações de dois corpos um sobre o outro são sempre iguais e sempre opostas em direção.
Qualquer coisa que puxe ou empurre outra coisa, é igualmente puxado ou empurrado por ela. Se alguém aperta uma pedra com o dedo, o dedo também é apertado pela pedra. Se um cavalo puxa uma pedra amarrada por uma corda, o cavalo também será (por assim dizer) puxado igualmente na direção da pedra, já que a corda, esticada nas duas pontas, puxará o cavalo para a pedra e a pedra para o cavalo, no mesmo processo promovendo o movimento de um e impedindo o movimento do outro. Se um corpo, colidindo com outro corpo, muda a direção do segundo em razão de sua própria força, então, pela força do outro corpo (já que a pressão mútua é igual), também mudará seu movimento na direção oposta. Por meio dessas ações, mudanças iguais ocorrem no movimento, mas não na velocidade, exceto, é claro, se os corpos não forem impedidos por nada além. Por isso, mudanças na velocidade que ocorrem em direções opostas são inversamente proporcionais aos corpos, já que os movimentos são trocados igualmente. Essa lei também é válida para atrações.
Qualquer coisa que puxe ou empurre outra coisa, é igualmente puxado ou empurrado por ela. Se alguém aperta uma pedra com o dedo, o dedo também é apertado pela pedra. Se um cavalo puxa uma pedra amarrada por uma corda, o cavalo também será (por assim dizer) puxado igualmente na direção da pedra, já que a corda, esticada nas duas pontas, puxará o cavalo para a pedra e a pedra para o cavalo, no mesmo processo promovendo o movimento de um e impedindo o movimento do outro. Se um corpo, colidindo com outro corpo, muda a direção do segundo em razão de sua própria força, então, pela força do outro corpo (já que a pressão mútua é igual), também mudará seu movimento na direção oposta. Por meio dessas ações, mudanças iguais ocorrem no movimento, mas não na velocidade, exceto, é claro, se os corpos não forem impedidos por nada além. Por isso, mudanças na velocidade que ocorrem em direções opostas são inversamente proporcionais aos corpos, já que os movimentos são trocados igualmente. Essa lei também é válida para atrações.
Mas eu acho que a terceira lei, enquanto axioma, não é das melhores. Imagine que você está em um carro que dá uma freada brusca. Você é acelerado para a frente, e se você multiplicar essa aceleração pela sua massa, descobre a força que te empurrou. Agora, onde está a reação dessa força, hein? hein?
A resposta é que essa força não tem reação. A terceira lei de Newton não funciona sempre, ela só funciona no caso especial em que o referencial não é acelerado. Essa força que você mediu é chamada de força inercial, ela não tem reação e só aparece em referenciais acelerados. Tem quem chame a força inercial de força fictícia, mas eu não gosto dessa nomenclatura: tente andar num carro sem cinto de segurança para ver o estrago fictício que o vidro vai fazer na sua cabeça!
"Mas peraí Ricbit, você não gosta de nenhuma das três leis!". Verdade, mas é porque dá pra fazer coisa melhor. Apresento a vocês a Lei Unificada de Newton:
Em um sistema isolado, o momento se conserva.
Pronto, uma única lei, bem mais simples que as anteriores, e você pode deduzir as três leis a partir dela. Na verdade, com esse enunciado você ainda ganha um monte de vantagens: ao contrário das três leis originais, essa versão funciona em referenciais não-inerciais, na relatividade especial e geral, e até na mecânica quântica!
Ler textos originais é um exercício muito divertido, mas para apreciar completamente você precisa se despojar do que aprendeu na escola. E a minha conclusão após ler bastante é que aprender é fácil, mas desaprender é muito mais difícil!