Mostrando postagens com marcador pokemon. Mostrar todas as postagens
Mostrando postagens com marcador pokemon. Mostrar todas as postagens

segunda-feira, 5 de setembro de 2016

A Matemática do Pokémon GO

Você já capturou todos os pokémons do Pokémon GO? Eu ainda não consegui, e também não conheço ninguém que tenha conseguido. O motivo é simples: para cada Pikachu que você encontrar, vai passar por um centena de Zubats antes! Fica difícil pegar todos quando alguns são tão raros!

pokemon_zubat

A pergunta natural agora é: se eu quiser insistir e continuar jogando até pegar todos, quanto tempo vai levar? Ou, de outro modo, qual é o número esperado de capturas até completar a coleção? Esse problema é difícil de resolver no caso geral, mas fica mais simples usando Combinatória Analítica!

Combinatória Analítica Numerada


No último post do blog eu mostrei como funciona a Combinatória Analítica, mostrando uma aplicação de cálculo com sequências de cara ou coroa. Mas essa foi só metade da história! Aquele tipo de cálculo só funciona quando os objetos contados são indistinguíveis (um resultado cara não é diferente de outro resultado cara).

Se você quiser lidar com objetos que são todos diferentes entre si, então você precisa de outra abordagem. Por exemplo, quantas permutações de ##n## elementos existem? Nesse caso, os elementos precisam ser todos diferentes. Quando ##n=3##, existem ##6## permutações:
$$ \enclose{circle}{1} \enclose{circle}{2} \enclose{circle}{3} \longrightarrow \begin{cases} \enclose{circle}{1} \enclose{circle}{2} \enclose{circle}{3} \\ \enclose{circle}{1} \enclose{circle}{3} \enclose{circle}{2} \\ \enclose{circle}{2} \enclose{circle}{1} \enclose{circle}{3} \\ \enclose{circle}{2} \enclose{circle}{3} \enclose{circle}{1} \\ \enclose{circle}{3} \enclose{circle}{1} \enclose{circle}{2} \\ \enclose{circle}{3} \enclose{circle}{2} \enclose{circle}{1} \\ \end{cases}$$
Para esse tipo de cálculo nós precisamos da Combinatória Analítica Numerada. Existem duas diferenças principais entre as versões numeradas e não-numeradas da teoria. A primeira que é, ao invés de usar funções geradoras normais, na versão numerada nós usamos funções geradoras exponenciais (EGF), que são definidas como abaixo: 
$$EGF(F[n]) = \sum_{n\ge 0}{F[n]\frac{z^n}{n!}}$$
Quando a ordem dos objetos é importante, os resultados tendem a crescer muito rapidamente, então dividir por ##n!## termo a termo ajuda as funções a ficarem bem comportadas.

A outra diferença é em um dos operadores básicos. A adição continua representando a união de conjuntos, mas a multiplicação, que antes era concatenação, fica um pouco diferente. No caso numerado, você não pode simplesmente concatenar, porque os números precisam ser sempre de ##1## a ##n##, e a concatenação simples te deixaria com duplicatas:
$$ \enclose{circle}{1} \enclose{circle}{2} \star \enclose{circle}{2} \enclose{circle}{1} =\; ?$$
A solução é renomear as bolinhas após concatenar, mas você precisa renomear de todas as maneiras possíveis que deixem a ordem dentro dos subconjuntos originais intacta:
$$ \enclose{circle}{1} \enclose{circle}{2} \star \enclose{circle}{2} \enclose{circle}{1} = \begin{cases} \enclose{circle}{1} \enclose{circle}{2} \; \enclose{circle}{4} \enclose{circle}{3} \\ \enclose{circle}{1} \enclose{circle}{3} \; \enclose{circle}{4} \enclose{circle}{2} \\ \enclose{circle}{1} \enclose{circle}{4} \; \enclose{circle}{3} \enclose{circle}{2} \\ \enclose{circle}{2} \enclose{circle}{3} \; \enclose{circle}{4} \enclose{circle}{1} \\ \enclose{circle}{2} \enclose{circle}{4} \; \enclose{circle}{3} \enclose{circle}{1} \\ \enclose{circle}{3} \enclose{circle}{4} \; \enclose{circle}{2} \enclose{circle}{1} \\ \end{cases}$$
Com isso já conseguimos definir as permutações. Elas são formadas do conjunto vazio, ou de um elemento concatenado e renomeado com uma permutação:
$$P=\varepsilon + z\star P$$
Traduzimos direto para a EGF:
$$P=1 +z P\implies P=\frac{1}{1-z}$$
E extraímos os coeficientes por comparação com a definição de EGF:
$$\begin{align*} \sum_{n\ge 0}P[n]\frac{z^n}{n!} &= \frac{1}{1-z} \\ \sum_{n\ge 0}\frac{P[n]}{n!}z^n &= \sum_{n\ge 0}1\times z^n \\ \frac{P[n]}{n!} &= 1 \\ P[n] &= n! \end{align*}$$
A quantidade de permutações de tamanho ##n## é ##n!##, então o método funciona!

O operador SEQ


Também podemos definir o operador ##SEQ##, que enumera todas as sequências possíveis de um conjunto:
$$SEQ(B[z]) = \frac{1}{1-B[z]}$$
Note que as permutações também podem ser vistas como as sequências renomeadas de zero ou mais átomos, então a definição acima dá o mesmo resultado.

Outra definição útil é ##SEQ_k##, que enumera apenas as sequências com ##k## elementos:
$$SEQ_k(B[z]) = (B[z])^k$$

O operador SET


Todas as funções acima são para construções onde a ordem é importante. Quando a ordem não importa, você sempre pode voltar para a Combinatória Analítica Não-Numerada. Mas e se o seu problema envolver os dois tipos ao mesmo tempo?

Nesse caso, a solução é o operador ##SET##. Ele é um operador numerado que define um conjunto onde a ordem não importa. A definição é a abaixo:
$$SET(B[z]) = e^{B[z]}$$
Por exemplo, quantas sequências possíveis de números de ##1## a ##n## existem, se a ordem não for importante? Isso é dado por:
$$SET(z) = e^z$$
Agora basta abrir a exponencial em série de Taylor e comparar com a definição de EGF:
$$\begin{align*} \sum_{n\ge 0}F[n]\frac{z^n}{n!} &= e^z \\ \sum_{n\ge 0}\frac{F[n]}{n!}z^n &= \sum_{n\ge 0}\frac{1}{n!}z^n \\ \frac{F[n]}{n!} &= \frac{1}{n!} \\ F[n] &= 1 \end{align*}$$
Ou seja, quando a ordem não é importante, só existe uma única sequência de ##1## a ##n## que usa todos os números de ##1## a ##n##. Faz sentido né.

(É por causa desse caso que a EGF chama função geradora exponencial. A EGF de uma sequência de ##1##s é a função exponencial.)

Pokémons uniformes


Com as ferramentas em mãos, já conseguimos modelar o problema do Pokémon GO! Mas, antes de começar o problema real, vale a pena estudar um caso mais simples. Vamos supor que os pokémons são uniformes e resolver esse caso mais fácil primeiro, depois a gente generaliza para o caso onde alguns pokémons são mais raros que outros.

O truque para usar Combinatória Analítica Numerada é achar uma maneira de enxergar seu problema como uma sequência de ##1## de ##n##. No nosso caso podemos fazer da seguinte maneira: para cada pokémon nós temos uma caixinha, e cada vez que achamos um pokémon na rua, nós colocamos dentro da caixinha uma bola com um número indicando a ordem em que ele foi encontrado.

Por exemplo, suponha que andávamos pela rua e fizemos 6 capturas, nessa ordem: Bulbassauro, Squirtle, Bulbassauro de novo, Charmander, Squirtle de novo, Bulbassauro de novo. As caixinhas ficariam assim:

bulbassauro##\enclose{box}{\enclose{circle}{1} \,\enclose{circle}{3}\, \enclose{circle}{6}}##
squirtle##\enclose{box}{\enclose{circle}{2}\, \enclose{circle}{5} }##
charmander##\enclose{box}{\enclose{circle}{4}} ##

Se nenhuma caixinha está vazia, então em algum ponto nós pegamos todos os pokémons (nesse caso, foi na quarta captura). Então, para ##n## capturas, se calcularmos a quantidade de configurações em que nenhuma caixinha está vazia, dividida pela quantidade de configurações totais, nós vamos ter a probabilidade de que a coleção foi completada com ##n## capturas ou menos.

Vamos lá. Se nós temos ##k## pokémons e ##n## capturas, então a quantidade de configurações totais é ##k^n## (é só atribuir uma pokémon a cada captura).

Para a quantidade de configurações em que nenhuma caixinha está vazia, precisamos modelar o problema com os operadores que descrevemos antes. Os pokémons são diferentes entre si, e a ordem importa, então vamos usar o operador ##SEQ##. A ordem das bolinhas dentro da caixinha não importa (afinal, ##\enclose{circle}{1} \enclose{circle}{3} \enclose{circle}{6}## é a mesma coisa que ##\enclose{circle}{3} \enclose{circle}{6} \enclose{circle}{1}## nesse contexto: a ordem das capturas é determinada pelos números nas bolinhas, não pela posição delas). Então vamos usar o operador ##SET##. E não podemos esquecer de que nenhuma caixinha pode ser vazia. Então a construção combinatória que descreve o problema é:
$$C=SEQ_k(SET(z)-\varepsilon)$$
..ou seja, uma sequência de ##k## conjuntos não-vazios. A função geradora é, portanto: 
$$C[z]=(e^z-1)^k$$
Note que, se nós já temos a função geradora, então a parte combinatória do problema já acabou. Daqui em diante é só abrir a caixa azul e fazer as contas!

Nós queremos calcular o valor esperado do número de capturas até completar a coleção. Pela definição, isso é: $$E[X]=\sum_{n\ge 0}n P(X=n)$$ Onde ##P(X=n)## é a probabilidade de que nós completamos a coleção na captura ##n##. Mas nós não temos isso! O que temos é ##P(x\le n)##, a probabilidade de completamos a coleção com pelo menos ##n## capturas. Felizmente não tem problema, porque dá para converter um no outro: $$\begin{align*} E[X] &= \sum_{n\ge 0} n P(X=n) \\ &= \sum_{n\ge 0} \sum_{i\lt n} P(X=n) \\ &= \sum_{n\ge 0} \sum_{i\ge 0} P(X=n) [i\lt n] \\ &= \sum_{i\ge 0} \sum_{n\ge 0} P(X=n) [n\gt i] \\ &= \sum_{i\ge 0} \sum_{n\gt i} P(X=n) \\ &= \sum_{i\ge 0} P(X\gt i) \\ &= \sum_{i\ge 0} 1-P(X\le i) \\ \end{align*}$$ Esse truque funciona sempre que a distribuição é discreta, porque podemos abrir a probabilidade: $$P(X>n)=P(X=n+1)+P(X=n+2)+\cdots$$ Vamos substituir agora. A nossa probabilidade para ##X\le n## é a divisão da quantidade de configurações com caixinhas não-vazias (que é o coeficiente ##z^n## da função geradora, vezes ##n!## porque é uma função geradora exponencial) pela quantidade total (que é ##k^n##): $$P(X\le n)=\frac{n![z^n](e^z-1)^k}{k^n}$$ Logo a expectativa é: $$\begin{align*} E[X] &=\sum_{n\ge 0} 1-P(X\gt n) \\ &=\sum_{n\ge 0} 1-\frac{n![z^n](e^z-1)^k}{k^n} \\ &=\sum_{n\ge 0} 1-n![z^n](e^{z/k}-1)^k \end{align*}$$ Esse último passo usou uma propriedade de escala das funções geradoras. Se uma sequência ##f(n)## tem função geradora ##F(z)##, então: $$\begin{align*} \sum_{n\ge 0}f(n)z^n &= F(z) \\ \sum_{n\ge 0}k^n f(n)z^n &= \sum_{n\ge 0}f(n)(kz)^n = F(kz) \end{align*}$$ Voltando: nós vimos que a função geradora exponencial da sequência constante de ##1##s é ##e^z##, então dá pra jogar para dentro: $$\sum_{n\ge 0} 1-n![z^n](e^{z/k}-1)^k = \sum_{n\ge 0} n![z^n]\left(e^z -\left(e^{z/k}-1\right)^k\right)$$ Para prosseguir agora tem um truque muito bom, que funciona assim: se você tem uma função geradora ##F(z)## bem comportada, então vale que: $$\sum_{n\ge 0}n![z^n]F(z)=\int_0^\infty e^{-t}F(t)\,dt$$ Parece meio mágico, mas é só consequência da forma integral do fatorial: $$n!=\int_0^\infty t^n e^{-t}\,dt$$ Se nós chamarmos os coeficientes da função geradora de ##f_n##, então: $$\begin{align*} \sum_{n\ge 0}n![z^n]F(z) &=\sum_{n\ge 0}n! f_n = \sum_{n\ge 0} f_n n! \\ &=\sum_{n\ge 0}f_n\left(\int_0^\infty t^ne^{-t}\,dt\right) \\ &=\int_0^\infty \left(\sum_{n\ge 0}f_n t^n e^{-t}\right)\,dt\\ &=\int_0^\infty e^{-t}\left(\sum_{n\ge 0}f_n t^n \right)\,dt\\ &=\int_0^\infty e^{-t}F(t)\,dt\\ \end{align*}$$ Aplicando ao nosso caso: $$\begin{align*} \sum_{n\ge 0} n![z^n]\left(e^z -\left(e^{z/k}-1\right)^k\right) &= \int_0^\infty e^{-t} \left(e^t -\left(e^{t/k}-1\right)^k\right) \,dt \\ &= \int_0^\infty \left(1 -e^{-t}\left(e^{t/k}-1\right)^k\right) \,dt \\ &= \int_0^\infty \left(1 -\left(e^{-t/k}\right)^k\left(e^{t/k}-1\right)^k\right) \,dt \\ &= \int_0^\infty \left(1 -\left(1-e^{-t/k}\right)^k\right) \,dt \\ \end{align*}$$ Nesse ponto já daria para jogar num solver numérico e calcular a solução. Mas essa integral tem uma forma fechada! Para calcular, basta fazer a mudança de variável abaixo: $$\begin{align*} v &= 1-e^{-t/k} \\ 1-v &= e^{-t/k} \\ e^{t/k} &= \frac{1}{1-v} \end{align*}$$ Agora deriva para achar quanto vale ##dt##: $$\begin{align*} \frac{dv}{dt} &= \frac{e^{-t/k}}{k} \\ dt &= k \, e^{t/k}\, dv \\ dt &= \frac{k}{1-v} dv \end{align*}$$ Arruma os intervalos: $$\begin{align*} t=0 &\implies v=1-e^0=1-1=0 \\ t=\infty &\implies v=1-e^{-\infty}=1-0=1 \end{align*}$$ E por fim soca tudo na integral: $$\begin{align*} \int_0^\infty \left(1 -\left(1-e^{-t/k}\right)^k\right) \,dt &= \int_0^1 \left(1 -v^k\right) \frac{k}{1-v} \,dv \\ &= k\int_0^1 \frac{1-v^k}{1-v} \,dv \\ &= k\int_0^1 (1+v+v^2+\cdots+v^{k-1}) \,dv \\ &= k \left[v+\frac{v^2}{2}+\frac{v^3}{3}+\cdots+\frac{v^k}{k} \right]_0^1 \\ &= k \left[1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{k} \right] \\ &= k H[k] \\ \end{align*}$$ Esse é o resultado final. O número esperado de capturas até você completar sua coleção de pokémons é ##k## vezes o harmônico de ##k##!

Qual seria o número esperado de capturas então? O jogo tem 151 pokémons, mas desses tem seis que ainda não podem ser pegos: Ditto, Articuno, Zapdos, Moltres, Mewtwo e Mew. Para pegar os 145 restantes, você precisaria de ##145\times H(145)\sim 806## capturas.

Mas isso só vale se os pokémons fossem uniformes! Como alguns são mais raros que outros, precisamos melhorar nossa estimativa.

Pokémons raros


A grande vantagem da Combinatória Analítica é que ela generaliza muito fácil. O problema de completar uma coleção com elementos não-uniformes é bem difícil com técnicas tradicionais, mas aqui fica simples: basta trocar os átomos ##Z_i## por ##p_iZ_i##, onde ##p_i## é a probabilidade de ocorrência dele.

Por que isso funciona? Suponha que você tem três pokémons, de probabilidades ##p_1=1/6##, ##p_2=1/3## e ##p_3=1/2##. Ao invés de fazer ##SEQ_3(SET(z)-\varepsilon)##, como no caso uniforme, você pode fazer:
$$(SET(Z_1)-\varepsilon)\star (SET(Z_2+Z_2)-\varepsilon)\star (SET(Z_3+Z_3+Z_3)-\varepsilon)$$
Isso vai dar um resultado seis vezes maior que o esperado, mas na proporção correta. Se você jogar esse valor ##1/6## para dentro, a conta fica:
$$\begin{align*} &(SET(\frac{Z_1}{6})-\varepsilon)\star (SET(\frac{2Z_2}{6})-\varepsilon)\star (SET(\frac{3Z_3}{6})-\varepsilon)=\\ &(SET(p_1Z_1)-\varepsilon)\star (SET(p_2Z_2)-\varepsilon)\star (SET(p_3Z_3)-\varepsilon) \end{align*}$$
Exatamente como mencionamos! Isso mostra que o resultado é válido para qualquer probabilidade racional, e você pode fazer um sanduíche se quiser reais também.

Daqui em diante as contas são as mesmas do caso uniforme, mudando somente o interior da integral: 
$$\begin{align*} E[X] &=\int_0^\infty\left( 1-\left(1-e^{-p_1t}\right)\left(1-e^{-p_2t}\right)\cdots\left(1-e^{-p_kt}\right) \right)\,dt\\ &=\int_0^\infty\left( 1- \prod_{1\le i\le k}\left(1-e^{-p_i t}\right) \right)\,dt\\ \end{align*}$$
Infelizmente essa integral não tem forma fechada, precisa ser calculada numericamente mesmo. Usando uma tabela com as probabilidades estimadas de cada pokémon, eu calculei a integral, e o resultado é que você precisaria de 51568 capturas para completar sua coleção!

Como de costume, eu fiz uma simulação para conferir os valores. Os scripts estão no github, e os resultados são:

Distribuição uniforme, valor teórico 805.8, computacional 805.1
Distribuição não-uniforme, valor teórico 51568, computacional 50931

Os resultados bateram como previsto! Vale a pena também estimar o tempo: se você pegar um pokémon a cada 3 minutos, então para fazer 51568 capturas você precisaria jogar por 107 dias seguidos, sem parar para dormir!

Na prática você pode completar em menos tempo que isso usando outros recursos do jogo, como evoluções e ovos, mas não tem muito segredo, para ser um mestre pokémon você precisa se dedicar bastante :)

PS: Como quase não tem literatura em português sobre o tema, as traduções ainda não são padrão. Eu traduzi Labelled Analytic Combinatorics como Combinatória Analítica Numerada, porque não achei nenhuma outra tradução que não fosse feia demais.

domingo, 23 de fevereiro de 2014

O Paradoxo do Pokémon Twitch

A última moda da internet é o Pokémon Twitch. Como essas modas evaporam tão rapidamente quanto surgem, vale a pena explicar do que se trata:

poketwitch

O twitch é um site para livestreaming de videogames. Você conecta seu videogame no site, e as pessoas do mundo todo podem te assistir enquanto você joga. Ele tem também uma janela de chat, então as pessoas podem comentar enquanto assistem.

Mas algum gênio aprimorou a idéia original. Ele ligou o twitch em um emulador de Game Boy, e configurou o emulador para pegar o texto do chat e interpretar como se fosse o joystick. Com isso, qualquer um que tenha uma conta lá pode controlar o personagem do jogo (no caso, a versão original de Pokémon). E melhor ainda, como todos estão controlando o mesmo jogo, então o que ele fez foi criar uma espécie de crowdgaming, onde a sabedoria das massas escolhe o melhor caminho do personagem.

Quer dizer, na teoria. Na prática, a internet será a internet. Para cada um que tenta jogar sério, tem um trollzinho que fica mandando o comando oposto. No pico de popularidade, ele chegou a ter mais de cem mil pessoas jogando ao mesmo tempo. Imagine metade disso sacaneando ao invés de jogando, e dá pra ter uma idéia da loucura que é o Pokémon Twitch (ou então leia o FAQ para entender tudo que já aconteceu até agora).

pikachu_muitcholoco

Quando eu fiquei sabendo do Pokémon Twitch, eu fiz o que qualquer pessoa normal faria: criei um modelo matemático do jogo. No meu modelo simplificado, o personagem só anda na vertical, um passo por iteração. O número de jogadores e o número de trolls é o mesmo, então a cada passo ele tem 50% de chance de andar uma unidade para cima ou para baixo. Assuma que ele começa da origem. Nesse modelo, eu faço duas perguntas:
  1. Depois de n iterações, onde você espera que o personagem esteja?
  2. Depois de n iterações, qual você espera que seja a distância do jogador à origem?
Eu sei, eu sei: "Ricbit, deixa de ser bobo! As duas perguntas são iguais! Suponha que a resposta da primeira pergunta é y. Então a resposta da segunda é y menos 0, ou seja, o mesmo valor y".

Paradoxalmente, isso está errado! A resposta das duas perguntas é diferente! Probabilidade é um tópico que escapa facilmente da nossa intuição, então vale a pena fazer as contas com cuidado para entender a solução.

O valor esperado da posição


Para a resposta da primeira pergunta, vamos calcular qual é o valor esperado da posição. Na iteração 0 ele ainda não executou nenhum movimento, então sabemos a posição deterministicamente: ele está na origem.


E na iteração n+1? Depende de onde ele estava na iteração n. Tem 50% de chance de ter subido, e 50% de ter descido:


Com isso podemos calcular o valor esperado de y(n+1) direto da lei da expectativa total:


Ou seja, o valor esperado em qualquer iteração é sempre zero, na média nós esperamos que ele fique andando em círculos e nunca fique muito longe da origem.

Entretanto, note que só porque o valor esperado é zero não quer dizer que ele vai sempre terminar na origem: a média é zero, mas a variância não é. Um exercício bastante curioso é calcular qual a probabilidade exata do personagem estar na origem após n iterações. Isso é fácil e dá pra resolver com combinatória de colégio. Imagine que você tem n caixinhas:


Cada uma dessas caixinhas você pode preencher com +1 ou -1; se a soma de todas elas for zero, então o personagem termina na origem. De quantas maneiras podemos fazer isso? Note que nós só precisamos escolher as posições dos +1:

+1 +1 +1 +1

Sabendo onde estão os +1, a posição dos -1 restantes fica unicamente determinada. Precisamos então descobrir de quantas maneiras podemos encaixar n/2 números +1 em n caixinhas. Mas isso é a definição do binomial:


Agora é só dividir pelo total. Como cada caixinha tem duas opções possíveis, +1 e -1, então o número total de caixinhas é 2^n. Portanto, a probabilidade dele terminar na origem é:


Essa fórmula tem um problema: embora ela seja exata, é muito ruim de calcular quando o n é grande (tente calcular para n=1000, o número de dígitos da sua calculadora vai acabar rapidinho). Podemos achar um assintótico usando a aproximação do coeficiente binomial central:


Mais fácil né? Agora podemos calcular facilmente que, para n=1000, a chance de terminar na origem é aproximadamente 2.5%.

Se você tem o olho bom, deve ter percebido uma pegadinha na derivação da fórmula acima. Ela só funciona quando n é par! De fato, quando n é ímpar, não tem como o número de +1 e -1 serem iguais, e portanto a chance dele terminar na origem é zero. Olha que curioso: quando o n é ímpar, ele nunca termina em zero, apesar do valor esperado ser zero!

O valor esperado da distância


Vamos agora à segunda pergunta, que é o valor esperado da distância. Por que afinal esse valor é diferente do anterior?

Para exemplificar, vamos supor que n=2. Em uma das amostras, digamos que os jogadores ganharam e ele andou 2 unidades para cima, então a distância para a origem é 2. Em outra amostra, suponha que os trolls ganharam, então ele andou 2 unidades para baixo. Qual a distância da origem? É 2 também! Distâncias são sempre positivas!

Em outras palavras, o valor esperado da distância é o valor esperado do módulo da posição! E quanto é esse valor? As contas aqui são um pouco mais complicadas, então vou precisar da caixa azul:

Dessa vez nós vamos ter que calcular o valor esperado pela definição:


Quando k=0 o somando vale zero também. Vamos então supor k positivo e usar a mesma idéia das caixinhas. A soma era zero quando a quantidade de +1 e de -1 era igual. Dessa vez, nós queremos que a soma seja k, então precisamos ter k números +1 a mais que o número de -1. Portanto, a chance dele terminar em um valor k positivo é:


Quando k é negativo, a fórmula é exatamente a mesma! Afinal, é só trocar todos os +1 por -1 e vice versa. Portanto, o valor esperado da distância é:

Essa fórmula é difícil de manipular, para deixar mais fácil vamos supor que n é par. Se n é par, podemos escrevê-lo como n=2m. Mas olha só, se n for par, então você nunca vai terminar numa distância k que seja ímpar. Se você tirar k ímpar de n par, o que sobra é ímpar, então não tem como ter soma zero. Portanto podemos supor k par, e fazer k=2q. Substituindo:


A somatória é uma soma hipergeométrica, então você pode resolvê-la com o algoritmo de Gosper, chegando assim na forma fechada. Mas se você não souber usar o algoritmo de Gosper, não tem problema, é só provar a identidade abaixo por indução finita:


Substituindo a fórmula temos:

Agora é só usar a aproximação do binomial central:

Chegamos então no resultado final, o valor esperado da distância, que é raiz de 2n sobre pi.


A matemática experimental


Probabilidade tem uma vantagem grande sobre outros ramos da matemática: é muito fácil conferir as contas. Basta escrever uma simulação computacional com uma quantidade razoável de amostras!
Eu escrevi um script em python (o código está no github), e os resultados para n=1000 e cem mil amostras foram os seguintes:

  • Posição: calculado 0.00, medido 0.05
  • Distância: calculado 25.23, medido 25.27
  • Término na origem: calculado 2.52%, medido 2.53%

Ou seja, a matemática experimental concordou com a matemática teórica.

A lição que fica dessa brincadeira é tomar muito cuidado com suas intuições sobre probabilidade, porque ela tem uma tendência a nos enganar bem facilmente :)