sábado, 2 de janeiro de 2010

Newton e os universos paralelos

Neste último Natal fomos passar o feriado no sítio. Não precisei de muito tempo pra notar que eu não funciono muito bem nesse ambiente. Além de ser alérgico a quase todos os insetos, eu tinha apenas uma pequena noção de coisas básicas de quem vive por lá (como andar a cavalo, por exemplo). Isso nem me chateia, porque em compensação eu tenho outras habilidades que o pessoal do sítio não tem, como saber usar o Google Sky Map pra identificar as estrelas no céu.

Enquanto eu descansava numa rede, eu comecei a pensar como seria um universo paralelo onde o Ricbit é um matuto que entende tudo da vida no campo. Mas o pensamento não durou muito. Que coisa batida isso, se for pra imaginar um universo paralelo, vamos imaginar um mais original!

Sempre que pensamos em universo paralelos, tendemos a imaginar um muito semelhante ao nosso, onde apenas alguns detalhes mudam. E se imaginássemos um universo tão diferente que até as leis físicas são distintas da nossa? Por exemplo, como seriam as órbitas planetárias num universo onde a Lei da Gravidade não variasse com o quadrado da distância, mas sim com alguma outra expressão qualquer?



Esse exemplo é bacana por causa da sua importância histórica. Vamos voltar para o tempo do Isaac Newton, que o Asimov considerava o maior de todos os cientistas. É inegável que o Newton era um gênio, mas o que nem todo mundo sabe é que ele era briguento, vingativo, e costumava cometer o maior pecado que um cientista pode fazer: não citar as fontes.

Isso aconteceu com a Lei da Gravidade. Naquela época ainda não existiam as listas de discussão, então os cientistas conversavam por cartas escritas à mão. Certa vez, Newton recebeu uma carta do Robert Hooke, aquele que hoje é conhecido pela lei da molas. Nessa carta, Hooke dizia que suspeitava da existência de uma força da gravidade, que seria central (dependendo apenas da distância), e provavelmente proporcional ao inverso do quadrado da distância. Na carta ele ainda dizia que não sabia como provar essa suspeita.

Hoje em dia a razão para o Hooke não saber provar é clara. Pra conseguir provar, você precisa saber Cálculo, que o Newton já tinha inventado, mas ainda não tinha contado pra ninguém. Se o Newton fosse gente boa, ele teria respondido algo do tipo "eu sei provar, chega mais e vamos resolver juntos". Ao invés disso, ele ficou na miúda, e anos depois publicou o Principia Mathematica, onde ele usava o Cálculo para mostrar que a tal força central inversamente quadrática implica em órbitas que são seções cônicas.

O Hooke, compreensivelmente, ficou puto, e foi reclamar com o editor do livro, o Halley (o cientista, não o cometa). Depois de muito bate-boca, o Halley convenceu o Newton a colocar um prefácio onde ele dizia que a lei da gravidade tinha sido sugerida informalmente pelo Hooke, mas sem demonstração. Numa carta posterior ao Hooke, Newton ainda diria "se enxerguei mais longe, foi porque estava sobre o ombro de gigantes". Não era humildade, era trollagem. Conta-se que Hooke era baixinho e corcunda.

Mas o Newton não parou por aí. Certa vez, ele ficou como responsável pela mudança de prédio da Royal Society. Entre os quadros que precisavam ser mudados, estavam os retratos de todos os membros do grupo. Por uma coincidência não-explicada, o quadro do Hooke foi o único que se perdeu no caminho. Hoje em dia, ninguém sabe como era o rosto do Hooke, esse quadro perdido era o único retrato dele.



Nada disso teria acontecido se o Hooke soubesse Cálculo. E nós, para calcularmos nossas órbitas em universos paralelos, vamos fazer exatamente as contas que o Hooke desconhecia! Se você também não sabe cálculo, pule a caixa azul e vá direto pro resultado.

Consideremos um sistema com duas massas pontuais no vácuo. As contas em coordenadas cartesianas são meio chatas, então vamos usar coordenadas polares, centradas numa das massas. Nesse tipo de conta, o normal é usar um sistema de versores r e θ que giram junto com o planeta, mas a engenharia me deixou vícios difíceis de largar, então eu vou usar exponenciais complexas. A posição do planeta é a seguinte:

p=re^{j\theta}

Note que r e θ na verdade são r(t) e θ(t), eu vou omitir o tempo pra não poluir as equações. A aceleração da partícula é a segunda derivada:

p'=r'e^{ j\theta}+rj\theta'e^{j\theta}
p''=r''e^{j\theta} +r'j\theta'e^{j\theta}+r'j\theta'e^{j\theta}+rj \theta''e^{j\theta}+rj^{2}\theta'^{2} e^{j\theta}

Agrupando os termos e lembrando que j2 = -1, temos:

p''=(r''-r\theta'^{2})e^{j\theta}+(2r'\theta'+r\theta'')je^{j\theta}

Até aqui tudo genérico. Vamos impor agora que a força seja central. Nesse caso, a componente transversal vale zero. Note que, com uma pequena manipulação algébrica, dá pra isolar uma derivada:

2r'\theta'+r\theta''=\frac{1}{r}(2rr'\theta'+r^{2}\theta'')=\frac{1}{r}\frac{d}{dt}(r^{2}\theta')=0

Aqui temos duas soluções. A primeira é sem graça, 1/r=0 se as duas massas estiverem infinitamente distantes, aí naturalmente a força transversal é zero. O segundo caso é mais legal:

\frac{d}{dt}(r^{2}\theta')=0 \Rightarrow r^{2}\theta'=k

Se a derivada é zero, então a integral é uma constante. Se você lembrar que r2θ é o dobro da área de um setor circular, então o que essa fórmula diz é que a taxa de variação da área de um setor é constante, ou seja, para um dado intervalo de tempo, ele percorre sempre a mesma área. Ora, essa é a segunda lei de Kepler! Pelo que concluímos, ela funciona pra qualquer força central, não só pra gravidade.

Vamos lidar com a componente radial agora. As massas são todas constantes, então vale que F=ma. Além disso, vamos introduzir uma variável u pra facilitar as contas:

\frac{F}{m}=r''-r\theta'^{2}
r=\frac{1}{u}\Rightarrow u=\frac{1}{r}

Nós podemos isolar o tempo e deixar o raio em função do ângulo, usando uma mudança de váriaveis com a regra da cadeia.

r^{2} \theta'=k \Rightarrow \frac{d\theta}{dt}=\frac{k}{r^{2}}=ku^{2}
r'=\frac{dr}{dt}=\frac{dr}{d\theta}\frac{d\theta}{dt}=\frac{d}{d\theta}(\frac{1}{u})ku^{2} =-\frac{1}{u^{2}}\frac{du}{d\theta}ku^{2}=-k\frac{du}{d\theta}
r''=\frac{dr'}{dt}=\frac{dr'}{d\theta}\frac{d\theta}{dt}=\frac{d}{d\theta}(-k\frac{du}{d\theta})ku^{2}=-k^{2}u^{2}\frac{d^{2}u}{d\theta^{2}}

Agora é só substituir na equação original:

\frac{F}{m}=r''-r(\frac{d\theta}{dt})^{2}=-k^{2}u^{2}\frac{d^{2}u}{d\theta^{2}}-\frac{1}{u}(ku^{2})^{2}=-k^{2}u^{2}(\frac{d^{2}u}{d\theta^{2}}+u)
-\frac{F}{mk^{2}u^{2}}=\frac{d^{2}u}{d\theta^{2}}+u

Pronto! Esta é a equação geral das órbitas com força central. Para conferir se está certo, vamos colocar uma força inversamente quadrática. Note que as forças precisam ser negativas, pois, na nossa orientação, forças atrativas são negativas. Aliás, como eu não estou interessado em unidades, vou escolher constantes que cancelem.

F=-\frac{mk^{2}}{r^{2}}=-mk^{2}u^{2}
1=\frac{d^{2}u}{d\theta^{2}}+u

Para resolver a equação diferencial, somamos a solução particular com as homogêneas. Uma particular é fácil, u=1. A homogênea todo mundo sabe de cabeça, é cos(θ) (vezes uma constante que depende das condições de contorno). Afinal, é a mesma solução do sistema massa-mola, do oscilador LC, e assim por diante.

u=1+e.cos(\theta) \Rightarrow r=\frac{1}{1+e.cos(\theta)

Ahá! Esta é equação da seção cônica em coordenadas polares. Dependendo do valor de e, a órbita pode ser circular (e=0, como Vênus, aproximadamente), elíptica (e<1, como a Terra), parabólica ou hiperbólica (e=1 ou e>1, como os cometas).

Vamos tentar outro tipo de força, por exemplo, uma inversamente cúbica. Nesse caso:

F=-\frac{mk^{2}}{r^{3}}=-mk^{2}u^{3}
u=\frac{d^{2}u}{d\theta^{2}}+u \Rightarrow \frac{d^{2}u}{d\theta^{2}} =0 \Rightarrow u=\theta \Rightarrow r=\frac{1}{\theta}

Ou seja, a órbita agora é uma espiral.

Agora que temos a equação geral, podemos colocar a força que quisermos, e analisar a órbita resultante. O problema é que muitas fórmulas geram equações que não tem solução analítica, então eu fiz um scriptzinho em python pra resolver numericamente mesmo. Abaixo o script e os resultados para várias funções:

Script em python para resolver órbitas em universos paralelos


Para uma força inversamente quadrática, a órbita é circular, como esperado pela Lei da Gravidade.


Já uma força inversamente cúbica gera uma espiral. Essa força é fraquinha demais pra manter uma órbita, e o planeta vai aos poucos se afastando.


Uma força inversamente linear demora para estabilizar, mas acaba fazendo uma órbita circular também.


E uma força constante, independente da distância? Ela também termina numa órbita circular, o que pra mim faz sentido. O planeta se move até o ponto onde a força constante é igual à centrípeta.


Agora vamos sacanear e colocar uma força senoidal só pra ver o que acontece. Ele não diverge, mas faz uma órbita muito doida. Provavelmente é um atrator estranho.